Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 17(5): 745-767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309455

RESUMO

BACKGROUND & AIMS: Colorectal cancer (CRC) is the third most common cancer in the world. Gut microbiota has recently been implicated in the development of CRC. Actinomyces odontolyticus is one of the most abundant bacteria in the gut of patients with very early stages of CRC. A odontolyticus is an anaerobic bacterium existing principally in the oral cavity, similar to Fusobacterium nucleatum, which is known as a colon carcinogenic bacterium. Here we newly determined the biological functions of A odontolyticus on colonic oncogenesis. METHODS: We examined the induction of intracellular signaling by A odontolyticus in human colonic epithelial cells (CECs). DNA damage levels in CECs were confirmed using the human induced pluripotent stem cell-derived gut organoid model and mouse colon tissues in vivo. RESULTS: A odontolyticus secretes membrane vesicles (MVs), which induce nuclear factor kappa B signaling and also produce excessive reactive oxygen species (ROS) in colon epithelial cells. We found that A odontolyticus secretes lipoteichoic acid-rich MVs, promoting inflammatory signaling via TLR2. Simultaneously, those MVs are internalized into the colon epithelial cells, co-localize with the mitochondria, and cause mitochondrial dysfunction, resulting in excessive ROS production and DNA damage. Induction of excessive DNA damage in colonic cells by A odontolyticus-derived MVs was confirmed in the gut organoid model and also in mouse colon tissues. CONCLUSIONS: A odontolyticus secretes MVs, which cause chronic inflammation and ROS production in colonic epithelial cells, leading to the initiation of CRC.


Assuntos
Colo , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , Colo/microbiologia , Espécies Reativas de Oxigênio , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Células Epiteliais , Bactérias/genética
2.
J Biol Chem ; 300(3): 105742, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346537

RESUMO

Human satellite II (HSATII), composed of tandem repeats in pericentromeric regions, is aberrantly transcribed in epithelial cancers, particularly pancreatic cancer. Dysregulation of repetitive elements in cancer tissues can facilitate incidental dsRNA formation; however, it remains controversial whether dsRNAs play tumor-promoting or tumor-suppressing roles during cancer progression. Therefore, we focused on the double-stranded formation of HSATII RNA and explored its molecular function. The overexpression of double-stranded HSATII (dsHSATII) RNA promoted mesenchymal-like morphological changes and enhanced the invasiveness of pancreatic cancer cells. We identified an RNA-binding protein, spermatid perinuclear RNA-binding protein (STRBP), which preferentially binds to dsHSATII RNA rather than single-stranded HSATII RNA. The mesenchymal transition of dsHSATII-expressing cells was rescued by STRBP overexpression. Mechanistically, STRBP is involved in the alternative splicing of genes associated with epithelial-mesenchymal transition (EMT). We also confirmed that isoform switching of CLSTN1, driven by dsHSATII overexpression or STRBP depletion, induced EMT-like morphological changes. These findings reveal a novel tumor-promoting function of dsHSATII RNA, inducing EMT-like changes and cell invasiveness, thus enhancing our understanding of the biological significance of aberrant expression of satellite arrays in malignant tumors.


Assuntos
Processamento Alternativo , DNA Satélite , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , RNA de Cadeia Dupla , Humanos , Processamento Alternativo/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Progressão da Doença , Invasividade Neoplásica/genética , DNA Satélite/genética
3.
Hepatol Commun ; 7(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938099

RESUMO

BACKGROUND: Precision medicine and customized therapeutics based on the features of each patient are important for maximizing therapeutic effects. Because most cases of HCC occur in the damaged liver through various etiologies, such as hepatitis virus infection, steatohepatitis, and autoimmune hepatitis, there should be a rationale for the choice of therapeutic options based on these etiologies. Although cabozantinib, an oral multikinase inhibitor, has demonstrated clinical effectiveness in advanced HCC, subgroup analyses showed a lower HR for death in HBV-related HCC. This study aimed to determine the therapeutic effects of cabozantinib in HBV-related HCC. METHODS: Using HBV infection models and gene knockout cells, we determined the crucial signaling axis responsible for the effects of cabozantinib on HBV. A chromatin immunoprecipitation assay was performed to determine the interaction between the signaling molecules and HBV DNA. Agonists and inhibitors were used for confirmation. RESULTS: Cabozantinib inhibited HBV replication through the HGF-mesenchymal-epithelial transition factor-signal transducer and activator of transcription 3 (MET-STAT3) signaling axis. The importance of STAT3 in viral replication has been confirmed using gene-edited STAT3 knockout cells. The chromatin immunoprecipitation assay revealed that the binding levels of phosphorylated STAT3 to enhancer region 1 of HBV covalently closed circular DNA were significantly increased by HGF stimulation. CONCLUSIONS: Cabozantinib has favorable therapeutic effects on HBV-related HCC because it inhibits HCC not only directly but also indirectly by means of inhibitory effects on HBV.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Fator de Transcrição STAT3/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico
4.
Oncol Rep ; 50(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37732519

RESUMO

Extracellular vesicles (EVs) produced by various cells, including tumor cells, carry biomolecules to neighboring cells. In hepatocellular carcinoma (HCC), adenosine to inosine RNA editing of antizyme inhibitor 1 (AZIN1), specifically regulated by adenosine deaminase acting on RNA­1 (ADAR1), promotes carcinogenesis. The present study examined if EVs and ADAR1 in the EVs released from HCC cells are transferred to neighboring cells in co­culture systems and reporter assay. Distribution of the ADAR1 expression in human tissues were examined by immunohistochemistry. EVs released from HCC cells containing ADAR1 were delivered to neighboring HCC cells and non­cancerous hepatocytes. The increased ADAR1 protein levels resulted in serine to glycine substitution at residue 367 of AZIN1, which augmented transformation potential and increased aggressive behavior of cancer cells. In clinically resected samples, ADAR1 distribution was highly heterogeneous within the tumor specimen and denser in non­cancerous tissue surrounding the HCC tissue. These observations suggested that ADAR1 protein may be delivered from HCC cells to neighboring cells via EVs and that EV­mediated RNA editing may serve a pivotal role in determining HCC heterogeneity and spread.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Edição de RNA/genética , Neoplasias Hepáticas/genética , Vesículas Extracelulares/genética , Hepatócitos
6.
iScience ; 26(2): 106021, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36798431

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis due to the difficulty of its diagnosis. Because human satellite II (HSATII) RNA, a satellite repeat RNA, is highly and specifically expressed in human PDAC, the serum HSATII RNA level may be a biomarker of PDAC. To measure the serum HSATII RNA level with high sensitivity and reproducibility, we previously developed a convenient method, tandem repeat amplification by nuclease protection (TRAP) combined with droplet digital PCR (ddPCR). Here, we refined the original method by simultaneously measuring the serum miR-21-5p level to enhance the detection of PDAC. The resulting PDAC-Index, constructed using serum HSATII RNA and miR-21-5p levels, discriminated patients with PDAC with high accuracy. We verified the clinical usefulness of the PDAC-Index as a supportive test in difficult-to-diagnose cases. The PDAC-Index has satisfactory diagnostic performance and may routinely be applied for detecting PDAC.

7.
Front Cell Dev Biol ; 10: 1023332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467402

RESUMO

Circular RNAs are single-stranded RNAs with a covalently closed structure formed by the process of back-splicing. Aberrant expression of circular RNAs contributes to the pathogenesis of a wide range of cancers. Pancreatic cancer is one of the most lethal cancers due to diagnostic difficulties and limited therapeutic options. Circular RNAs are emerging as novel diagnostic biomarkers and therapeutic targets for pancreatic cancer. Moreover, recent advances in the therapeutic application of engineered circular RNAs have provided a promising approach to overcoming pancreatic cancer. This review discusses the roles of circular RNAs in the pathogenesis of pancreatic cancer and in potential treatment applications and their usefulness as diagnostic biomarkers.

8.
Biochem Biophys Res Commun ; 637: 314-321, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36417776

RESUMO

Extracellular vesicles (EVs) released from cells into the blood facilitate intercellular communication and serve as new biomarkers to understand the pathophysiology of several conditions. Although the importance of the cargo inside EVs has been extensively studied, the sizes of EVs that vary with different types of cancers are relatively poorly explored. Here, we show that pancreatic cancer cell-derived EVs are significantly smaller than non-cancer cell-derived EVs. The smaller size distribution of these EVs was confirmed by specifically isolating and examining tumor-derived EVs from the heterogeneous EV population isolated from the sera of patients with pancreatic ductal adenocarcinoma. In vitro analyses mimicking tumor microenvironment conditions revealed that low glucose conditions reduced the size distribution and increased the level of unsaturated fatty acids in the tumor-derived EVs. Because the lipid composition defines the fluidity of the membrane, the results suggest that the alterations in the size of EVs could be due to the alteration of the fluidity and stability of the membrane covering the EVs. Furthermore, the uptake of smaller EVs by recipient cells was increased, which may lead to enhanced functional results. These results provide fundamental insights into the factors defining the size of EVs, which may be important for developing cancer screening methods and understanding cancer-related pathophysiology.


Assuntos
Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Pâncreas , Glucose , Lipídeos , Microambiente Tumoral , Neoplasias Pancreáticas
10.
Biochem Biophys Res Commun ; 607: 89-95, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35367833

RESUMO

DNA repair processes represent attractive synthetic lethal targets because many cancers exhibit impaired DNA repair pathways, which leads to dependence on specific repair proteins. The finding that poly (ADP-ribose) polymerase (PARP)-1 inhibitors are highly effective against cancers with deficient homologous recombination highlights the potential of this approach. In hepatitis B viral (HBV) infection, degradation of the structural maintenance of the chromosome 5/6 (Smc5/6) complex, which plays a key role in repairing double-stranded DNA breaks by homologous recombination, is induced by HBV regulatory protein X (HBx). Here, we hypothesized that a deficiency in the Smc5/6 complex in HBV-associated hepatocellular carcinoma (HCC) increases susceptibility to PARP inhibitors via a deficiency in homologous recombination. We confirmed impaired double-stranded DNA break repair in HBx-expressing HCC cells using a sensitive reporter to monitor homologous recombination. Treatment with a PARP inhibitor was significantly more effective against HBx-expressing HCC cells, and overexpression of Smc5/6 prevented these effects. Overall, our results suggest that homologous recombination deficiency in HBV-associated HCC leads to increased susceptibility to PARP inhibitors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Recombinação Homóloga , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética
11.
J Hepatol ; 76(1): 53-62, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478763

RESUMO

BACKGROUND & AIMS: HBV causes hepatocellular carcinoma (HCC). While it was recently shown that the ability of HBV X protein (HBx) to impair the Smc5/6 (structural maintenance of chromosome 5/6) complex is important for viral transcription, HBx is also a potent driver of HCC. However, the mechanism by which HBx expression induces hepatocarcinogenesis is unclear. METHODS: Degradation of the Smc5/6 complex and accumulation of DNA damage were observed in both in vivo and in vitro HBV infection models. Rescue experiments were performed using nitazoxanide (NTZ), which inhibits degradation of the Smc5/6 complex by HBx. RESULTS: HBx-triggered degradation of the Smc5/6 complex causes impaired homologous recombination (HR) repair of DNA double-strand breaks (DSBs), leading to cellular transformation. We found that DNA damage accumulated in the liver tissue of HBV-infected humanized chimeric mice, HBx-transgenic mice, and human tissues. HBx suppressed the HR repair of DSBs, including that induced by the CRISPR-Cas9 system, in an Smc5/6-dependent manner, which was rescued by restoring the Smc5/6 complex. NTZ restored HR repair in, and colony formation by, HBx-expressing cells. CONCLUSIONS: Degradation of the Smc5/6 complex by HBx increases viral transcription and promotes cellular transformation by impairing HR repair of DSBs. LAY SUMMARY: The hepatitis B virus expresses a regulatory protein called HBV X protein (or HBx). This protein degrades the Smc5/6 complex in human hepatocytes, which is essential for viral replication. We found that this process also plays a key role in the accumulation of DNA damage, which contributes to HBx-mediated tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/efeitos adversos , Proteínas Cromossômicas não Histona/efeitos adversos , Reparo de DNA por Recombinação/efeitos dos fármacos , Transativadores/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/patologia , Camundongos , Reparo de DNA por Recombinação/imunologia , Estatísticas não Paramétricas
12.
Cancer Gene Ther ; 29(5): 505-518, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33833413

RESUMO

Mutational activation of the KRAS gene occurs in almost all pancreatic ductal adenocarcinoma (PDAC) and is the earliest molecular event in their carcinogenesis. Evidence has accumulated of the metabolic reprogramming in PDAC, such as amino acid homeostasis and autophagic flux. However, the biological effects of KRAS mutation on metabolic reprogramming at the earlier stages of PDAC carcinogenesis are unclear. Here we report dynamic metabolic reprogramming in immortalized human non-cancerous pancreatic ductal epithelial cells, in which a KRAS mutation was induced by gene-editing, which may mimic early pancreatic carcinogenesis. Similar to the cases of PDAC, KRAS gene mutation increased the dependency on glucose and glutamine for maintaining the intracellular redox balance. In addition, the intracellular levels of amino acids were significantly decreased because of active protein synthesis, and the cells required greater autophagic flux to maintain their viability. The lysosomal inhibitor chloroquine significantly inhibited cell proliferation. Therefore, metabolic reprogramming is an early event in carcinogenesis initiated by KRAS gene mutation, suggesting a rationale for the development of nutritional interventions that suppress or delay the development of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Carcinogênese , Carcinoma Ductal Pancreático/metabolismo , Humanos , Mutação , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
13.
J Hum Genet ; 66(2): 181-191, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32879441

RESUMO

Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are produced from pre-mRNAs through a process known as back-splicing. Although circRNAs are expressed under specific conditions, current understanding of their comprehensive expression status is still limited. Here, we performed a large-scale circRNA profiling analysis in human pancreatic ductal adenocarcinoma (PDAC) tissues, using circular RNA-specific RNA sequencing. We identified more than 40,000 previously unknown circRNAs, some of which were upregulated in PDAC tissues, compared with normal pancreatic tissues. We determined the full-length sequence of a circRNA upregulated in PDAC, which was derived from two noncoding RNA loci on chromosome 12. The novel circRNA, named circPDAC RNA, was not expressed in normal human cells, but was expressed in PDAC and other carcinoma cells. While postulated biological functions, such as peptide production from the circPDAC RNA, were not detected, its aberrant expression was confirmed in other PDAC tissues and in serum from a PDAC patient. These results demonstrate that comprehensive studies are necessary to reveal the expression status of circRNAs and that the circPDAC RNA identified here might serve as a novel biomarker for cancers, including PDAC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , RNA Circular/genética , Carcinoma Ductal Pancreático/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética , Análise de Sequência de RNA , Células Tumorais Cultivadas
14.
Front Cell Dev Biol ; 8: 568366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117799

RESUMO

Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed continuous loop. The expression pattern of circRNA varies among cell types and tissues, and many circRNAs are aberrantly expressed in various cancers. Aberrantly expressed circRNAs have been shown to play crucial roles in carcinogenesis, functioning as microRNA sponges or new templates for protein translation. Recent research has shown that circRNAs are enriched in exosomes. Exosomes are secretory vesicles that mediate intercellular communication through the delivery of cargo, including proteins, lipids, DNA, and RNA. Exosome-mediated crosstalk between cancer cells and the tumor microenvironment promotes the epithelial-mesenchymal transition, angiogenesis, and immune escape, and thus may contribute to cancer invasion and metastasis. In this review, we discuss the biological functions of exosomal circRNAs and their significance in cancer progression. Additionally, we discuss the potential clinical applications of exosomal circRNAs as biomarkers and in cancer therapy.

15.
Sci Rep ; 10(1): 15556, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968163

RESUMO

MICA/B proteins are expressed on the surface of various types of stressed cells, including cancer cells. Cytotoxic lymphocytes expressing natural killer group 2D (NKG2D) receptor recognize MICA/B and eliminate the cells. However, cancer cells evade such immune recognition by inducing proteolytic shedding of MICA/B proteins. Therefore, preventing the shedding of MICA/B proteins could enhance antitumor immunity. Here, by screening a protease inhibitor library, we found that the fatty-acid amide hydrolase (FAAH) inhibitor, URB597, suppresses the shedding of MICA/B. URB597 significantly reduced the soluble MICA level in culture medium and increased the MICA level on the surface of cancer cells. The effect was indirect, being mediated by increased expression of tissue inhibitor of metalloproteinases 3 (TIMP3). Knockdown of TIMP3 expression reversed the effect of URB597, confirming that TIMP3 is required for the MICA shedding inhibition by URB597. In contrast, FAAH overexpression reduced TIMP3 expression and the cell-surface MICA level and increased the soluble MICA level. These results suggest that inhibition of FAAH could prevent human cancer cell evasion of immune-mediated clearance.


Assuntos
Amidoidrolases/genética , Antígenos de Histocompatibilidade Classe I/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Benzamidas/química , Benzamidas/farmacologia , Carbamatos/química , Carbamatos/farmacologia , Linhagem Celular Tumoral , Meios de Cultura/química , Meios de Cultura/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
16.
MedComm (2020) ; 1(3): 302-310, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34766124

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease and highly resistant to all forms of therapy. PDAC cells reprogram their metabolism extensively to promote their survival and growth. Reflecting the vital role of altered metabolism, experimental and clinical trials targeting the rewired metabolism are currently underway. In this review, we summarize the vital role of metabolic reprogramming in the development of PDAC and the future of novel therapeutic applications.

17.
Oncol Lett ; 18(6): 6397-6404, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31807163

RESUMO

Although the detection of circulating tumor cells (CTCs) should be crucial for future personalized medicine, no efficient and flexible methods have been established. The current study established a polymeric custom-made chip for capturing CTCs with a high efficiency and flexibility. As an example of clinical application, the effects of self-expandable metallic stent (SEMS) placement on the release of cancer cells into the blood of patients with colorectal cancer and bowel obstruction were analyzed. This was assessed as the placement of SEMS may cause mechanical damage and physical force to malignant tissue, increasing the risk of cancer cell release into the bloodstream. The present study examined the number of CTCs using a custom-made chip, before, at 24 h after and at 4 days after SEMS placement in patients with colorectal cancer. The results revealed that, among the 13 patients examined, the number of CTCs was increased in three cases at 24 h after SEMS placement. However, this increase was temporary. The number of CTCs also decreased at 4 days after stent placement in most cases. The CTC chip of the current study detected the number of CD133-positive cancer stem-like cells, which did not change, even in the patient whose total number of CTCs temporarily increased. The results indicated that this custom-made microfluid system can efficiently and flexibly detect CTCs, demonstrating its potential for obtaining information during the management of patients with cancer.

18.
Oncol Rep ; 42(4): 1459-1466, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31322270

RESUMO

The expression of CDR1­AS, a representative circular RNA, is closely linked with poor prognosis in gastrointestinal cancers, such as colon, liver, and pancreatic cancers. Although it is well known that CDR1­AS antagonizes microRNA­7 function through its sequence similarities in the brain, its biological function and link with the malignant potential of cancer cells remain unclear, partly due to the difficulties of ectopic expression of circular RNAs. In the present study, SW620, a colon cancer cell line that stably expresses CDR1­AS RNA circularized, was established using the laccase 2 gene cassette, and its biological function associated with malignant behavior was determined. In contrast to previous studies, cell growth or invasion ability was not altered by CDR1­AS expression. However, the expression levels of CMTM4 and CMTM6, which were recently recognized as critical regulators of PD­L1 protein expression at the cell surface, were significantly increased. Accordingly, the cell surface PD­L1 protein levels were increased in CDR1­AS­expressing cells. Notably, the effects were not canceled out by overexpressing microRNA­7, indicating that the increase in cell surface PD­L1 in CDR1­AS­expressing cells was not dependent on microRNA­7 function. These results indicated that expression of this circular RNA in cancer cells may lead to poor prognosis by increasing cell surface PD­L1 levels through microRNA­7­independent mechanisms.


Assuntos
Antígeno B7-H1/biossíntese , Neoplasias Colorretais/metabolismo , RNA Longo não Codificante/biossíntese , Animais , Antígeno B7-H1/genética , Células CACO-2 , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HEK293 , Humanos , Imuno-Histoquímica , Proteínas com Domínio MARVEL/biossíntese , Proteínas com Domínio MARVEL/genética , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas da Mielina , Invasividade Neoplásica , Prognóstico , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
Cell Mol Gastroenterol Hepatol ; 7(2): 297-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30704981

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) infection is a major health concern worldwide. Although currently used nucleos(t)ide analogs efficiently inhibit viral replication, viral proteins transcribed from the episomal viral covalently closed circular DNA (cccDNA) minichromosome continue to be expressed long-term. Because high viral RNA or antigen loads may play a biological role during this chronicity, the elimination of viral products is an ultimate goal of HBV treatment. HBV regulatory protein X (HBx) was recently found to promote transcription of cccDNA with degradation of Smc5/6 through the interaction of HBx with the host protein DDB1. Here, this protein-protein interaction was considered as a new molecular target of HBV treatment. METHODS: To identify candidate compounds that target the HBx-DDB1 interaction, a newly constructed split luciferase assay system was applied to comprehensive compound screening. The effects of the identified compounds on HBV transcription and cccDNA maintenance were determined using HBV minicircle DNA, which mimics HBV cccDNA, and the natural HBV infection model of human primary hepatocytes. RESULTS: We show that nitazoxanide (NTZ), a thiazolide anti-infective agent that has been approved by the FDA for protozoan enteritis, efficiently inhibits the HBx-DDB1 protein interaction. NTZ significantly restores Smc5 protein levels and suppresses viral transcription and viral protein production in the HBV minicircle system and in human primary hepatocytes naturally infected with HBV. CONCLUSIONS: These results indicate that NTZ, which targets an HBV-related viral-host protein interaction, may be a promising new therapeutic agent and a step toward a functional HBV cure.


Assuntos
DNA Circular/genética , Proteínas de Ligação a DNA/metabolismo , Vírus da Hepatite B/genética , Tiazóis/farmacologia , Transativadores/metabolismo , Transcrição Gênica/efeitos dos fármacos , DNA Viral/genética , Células HEK293 , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Ensaios de Triagem em Larga Escala , Humanos , Nitrocompostos , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Proteínas Virais Reguladoras e Acessórias
20.
Hepatology ; 69(5): 1903-1915, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586159

RESUMO

Hepatitis B virus (HBV) infection is a major health concern worldwide. To prevent HBV-related mortality, elimination of viral proteins is considered the ultimate goal of HBV treatment; however, currently available nucleos(t)ide analogs rarely achieve this goal, as viral transcription from episomal viral covalently closed circular DNA (cccDNA) is not prevented. HBV regulatory protein X was recently found to target the protein structural maintenance of chromosomes 5/6 (Smc5/6) for ubiquitination and degradation by DDB1-CUL4-ROC1 E3 ligase, resulting in enhanced viral transcription from cccDNA. This ubiquitin-dependent proteasomal pathway requires an additional ubiquitin-like protein for activation, neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8). Here, we show that pevonedistat, a NEDD8-activating enzyme inhibitor, works efficiently as an antiviral agent. Pevonedistat significantly restored Smc5/6 protein levels and suppressed viral transcription and protein production in the HBV minicircle system in in vitro HBV replication models and in human primary hepatocytes infected naturally with HBV. Conclusion: These results indicate that pevonedistat is a promising compound to treat chronic HBV infection.


Assuntos
Ciclopentanos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Pirimidinas/farmacologia , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ciclopentanos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Células Hep G2 , Hepatite B/tratamento farmacológico , Humanos , Cultura Primária de Células , Pirimidinas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA